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LElTER TO THE EDITOR 

The complex-Hamiltonian approach 

A N Andriotis 
InStitUte Of Electronic Structure and Lasers, Foundation for Research and lkchnalogy- 
Hellas, PO Bar 1521. 71110 Heraklion, Crete, Gleece 

Reoeived 9 September 1992 

A b t m L  It i s  pointed out that when a complex-Hamiltonian technique is employed for 
soiving Schmdinger's equalion either in solids or atoms, the location of the resonances 
Cannot be amrateiy determined by specifying the M I  energies at which the imaginary 
pan of the companding Green's function exhibits resonance peaks. Instead of spanning 
the real energy axis to locate the peaks of the electron DOS, it is more accurate to 
solve the m m p l a  Hamiltonian in the entire complex energy plane. In particular, it 
is demonstrated that lhe locations of the resonances of an embedded atom which are 
obtained ty a direct diagonalization of the complex Hamiltonian in the complex energy 
plane do  not mincide in general with the peaks of the electron ws obtained from a 
Green's funnion approach. 

Various theoretical approaches to many-particle systems, such as metal surfaces, 
chemisorbed systems, impurity systems, alloys etc., lead to efficient calculational 
schemes which have one common characteristic: they transform the problem 
under consideration into an equivalent one in which a complex, energydependent 
Hamiltonian H ( r ;  E) (which in general is non-Hermitian) replaces the original real, 
Hermitian (single-electron) Hamiltonian of the system under consideration. Among 
these calculational schemes we mention the complex coordinate method (CCM) [l], 
the sub-space Hamiltonian method (21, the embedding scheme of Inglesfield [3] and 
the coherent potential approximation (CPA) [4]. 

In order to extend the computational techniques which are used to calculate 
bound states of atoms and molecules into the case of resonances (continuum or 
scattering states) the CCM employs an analytical continuation of the Hamiltonian in 
the complex energy plane. On the other hand, the sub-space Hamiltonian method 
and the embedding scheme of Inglesfield offer the advantage of replacing the effect 
of a surrounding host environment on a small sub-space of the system of interest by 
introducing an energy-dependent Hamiltonian which is complex and non-Hermitian 
in general. Finally, the CPA aims at the calculation of a complex, energydependent 
self-energy which results in a complex, energy-dependent Hamiltonian. 

The information which is obtained from the solution of the complex Hamiltonian 
is usually the hound and resonance states of the system and the associated electron 
density of states (DOS). The calculational techniques which are commonly used to  
solve the complex Hamiltonian that we mentioned above depend on the quantity one 
is interested in and go along two major avenues of calculation. According to the first 
one the complex Hamiltonian is solved (diagonalized) in the complex energy plane 
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and its complex eigenvalues are obtained 

H ( r ;  E ) q i ( r ;  E )  = Ei(  E ) q i ( r ;  E ) .  (1) 

As Allen and Menon indicate [2], the energies a t  which E i ( E )  = E specify 
the hound states of the Hamiltonian if E is real and specify its resonant states if 
E is complex. It is only for very narrow resonances that their location may be 
approximately determined by the approximate relation [2] 

Re E i ( E )  = E. (2) 

This can be verified [2] by writing the spectral representation of the 
Green’s function G ( r ,  r’; E) which corresponds to the complex, energydependent 
Hamiltonian H ( r ;  E), i.e. 

q i ( r ;  E)@:(+; E )  
E -  E@) 

G ( r , T ’ ; E ) = x  (3) 

assuming that 

Q i ( r ;  E)@:(r ’ ;  E )  = 6(r - T ’ ) .  (4) 

According to the second calculational approach, the energy-dependent Hamilto- 
nian is used to obtain the corresponding Green’s function, G( E), of the system from 
which the electron DOS, p( E) is obtained. The locations of the peaks of the elec- 
tron DOS as one spans the energy along the real energy axis are associated with the 
energies of the resonances of the Hamiltonian. 

In view of equation (2) one realizes that the second calculational approach is only 
approximately valid and not equivalent with the first calculational scheme in general. 
It is this, the problem of equivalence between the two calculational schemes discussed 
above, that we would like to address in the present letter. 

It has been anticipated that both calculational approaches to the solution of the 
complex Hamiltonian problem are equivalent although according to equations (1)-(4) 
one could argue that these two methods are not equivalent in general because the 
Green’s function approach restricts itself in a spanning along the real energy axis 
while the direct diagonalization of the complex Hamiltonian searches for solutions in 
the whole compla energy plane. On the basis of the classical theory of resonances, 
this argument sounds misleading as one expects any resonance to be exhibited as 
a peak in the electron DOS along the real energy axis. However, such a statement 
refers to real Hamiltonians and it is different from the problem which I would like 
tu address in the present letter which refers to a complex Hamiltonian containing a 
potcntial which depends on the (complex) energy. In the latter case, it will be shown 
that the two approaches mentioned above are not equivalent in general as equations 
(1)-(4) imply. This problem seems to be the cost that is paid when one transforms 
an infinite-space problem into a problem extended over a finite volume, or when 
calculational techniques suitable for bound states are applied in order to calculate 
scattering or resonance states. Putting the problem in another way we can say that 
we qucstion here how accurately the formal equation 

p ( E )  = -(1/7r) Im 7t G ( E )  (5)  
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traces the poles of G( E )  when E is restricted on the real axis even though G( E) is 
associated with a complex Hamiltonian. 

In the case of the CPA, one calculates corrections to the eigenvalues (i.e., the 
cohercnt potentials or self-energies) and thus the CPA is inherently associated with a 
solution over the whole complex energy plane. In this case no problem of equivalence 
appears and the CPA is a valid solution to the associated complex-Hamiltonian 
problem. Thus, the problem of equivalence which is presently addressed refers to 
the comparison between the methods which solve the complex Hamiltonian in the 
whole complex plane, as the CCM does, and those which rely on the calculation of the 
electron DOS by spanning the real energy axis although a complex energydependent 
potential is present in the Hamiltonian. 

This problem of equivalence between the two methods of solving the complex 
Hamiltonian problem was checked by Inglesfield [3] in an effort to demonstrate 
the applicability of an efficient embedding scheme aimed at treating a wide class 
of impurity and surface problems. According to Inglesfield's results and within the 
anticipated accuracy, the equivalence of the two methods appeared to be satisfactory. 
However, a more careful and accurate reexamination of his results indicates that 
small discrepancies between the results of the two methods cannot be eliminated and 
therefore the two methods are not exactly equivalent. In particular, we observe that 
the peab  of the electron DOS of his example (figure 4 of [3]) are found at energies 
1.70 and 6.5 au while the quoted results of a direct-diagonalization approach give 
eigenvalues with real part 1.3 and 6.2 au respectively. This observation made us 
reexamine the problem of equivalence with more elaborate calculations in the case 
of atomic resonances where the CCM has proved extremely efficient in locating the 
energies of atomic resonances by solving the Hamiltonian according to equations (1) 
and (2). 

In the present letter, we report on results obtained by the two methods of solving 
the complex-Hamiltonian problem described above. In particular, we present results 
from the solution of a complex Hamiltonian, namely that of an atom embedded in 
a mctal host, obtained by both an accurate direct-diagonalization method and the 
Green's function approach. 

Our system of consideration refers to an atom embedded in a metal host, the latter 
approximated by the jellium model [S, 61. Our method utilizes Inglesfield's embedding 
approach 131 and the coupled Hartree-Fock (CHF) scheme of Cohen and Roothaan 
[7,8]. Inglesfield's scheme allows us to define an energy-dependent Hamiltonian term 
V ( T ;  E) which reflecu the effect of the metallic host on the embedded impurity. 
This term is added to the free-impurity atomic Hamiltonian which therefore becomes 
complex and energy dependent. The so-obtained Hamiltonian is subsequently solved 
within the CHF approximation which is based on  a direct diagonalization of the 
complex Hamiltonian. The details of this method have been reported elsewhere, 
where results for embedded He, Li and excited Ar (KL 3 ~ ~ 4 s ' )  atoms were given 
[5,61. 

The Same embedded systems as the reported ones (He, Li, Ar) were also studied 
using the Green's function approach. In particular, at self-consistency of our Hartree- 
Fock solution we saved the Hartree-Fock Hamiltonian H i j (  E) and the overlap matrix 
Sij lrom which we obtained the Green's function, G(r, T ;  E), and the electron DOS 
p ( E )  according to Inglesfield's approach 131, i.e. 

(I+(') - E S ( ' ) ) G ( ' )  = -I 1 = s, p (6) 
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p ( ' ) (E)  = ( l / n )  Im 'It C ( ' ) ( E )  1 = s, p. (7) 

In figure 1 we give a representative example of the electron DOS obtained 
according to equations (6) and (7) for an excited argon atom embedded in a metallic 
jellium. As is apparent from the results in table 1, the location of the peak of the 
electron DOS does not coincide with the real part of the corresponding eigenvalue 
obtained by direct diagonalization. This discrepancy is exhibited in our results as far 
as the embedding potential V(r; E) is complex. When V ( T ;  E) becomes real or 
sufficiently small, the two calculational schemes give results identical to those shown 
in table 1. In our calculations of the electron DOS according to equations (6) and (7) 
we had fixed the imaginary part of the energy to be Im E = -0.oOo5 (au) and our 
tolerance in locating the peak of the electron DOS is f0.0005 au. 

Tnbk 1. 

Element Radius of Eigenvalue of outer electmn L Location of 

impurity region Re 6 Im c elmtmn DOS peak 
(equation (2)) 

AI" (KL364.s) 5.0 -0.11572 -0.13821 -0.183 
7.5 -0.17166 -0.04441 -0.1790 
10.0 -0.1495 -0.w638 -0.15W 

Li (1S'Zs) 3.0 -0.17187 -0.16C58 -0.1685 
5.0 -0.22035 -0.01355 -0.Zzu) 
7.0 -0.21202 -0.03168 -0.2090 
10.0 -0.19781 -0.W107 -0.1975 

4 20 

0.0 
4 5  4.1 -03 -02 41 0.n 0.1 02 03 0.4 

Energy 

Flgum 1. The electron Dos associaled with lhe 4s state of the argon atom (U 3s23ps4s) 
embedded in a metal jellium characterized by the parametem (see [ 5 , 6 ] )  Vh,,, = 
-0.4 au and rs = 5.0 au. 
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Figure 2. The elestmn ws a s a i a t e d  with the 2s stale of a lithium atom (1s22s) 
embedded in a metal jellium characterized by the paramelen (see [5 ,6 ] )  V,,,, = 
-0.4 au and rs = 10.0 au. The resonance lhat is exhibited at about 0.12 au is referred 
to as a ‘ghost state’ (see text). 

In figure 2 we present a similar graph for the electron DOS associated with the 
2s orbital of the Li (Is%) atom embedded in jellium of V,,to, = -0.4 au and rs 
= 10.0 au. In this case, the peak of the electron DOS at -0.1975 au coincides with 
the real part of the eigenvalue of the  2s state as indicated in table 1. However, we 
observe an additional peak at about 8.8 eV higher which we cannot assign to any 
excited (ls2ns) state. The appearance of this unphysical state cannot be justified and 
we believe that it is more likely to reflect an artifact of the Green’s function approach 
than a limitation of the Gaussian basis set used in our expansions. 

In conclusion, we can argue that, in addition to the drawback that the Green’s 
function approach reveals unphysical states whereas the direct-diagonalization method 
does not, our results indicate that the anticipated equivalence between the two 
described calculational approaches is only approximately valid for reasonably narrow 
resonances in agreement with the discussion that led to equation (2). On the other 
hand, the indicated equivalence [9] between the sub-space Hamiltonian technique [2] 
and the embedding scheme of Inglesfield [3] support our questioning the equivalence 
of the methodologies used to locate the resonances of a complex Hamiltonian. It 
appears that, when a complex-Hamiltonian approach is employed, a calculational 
scheme which directly solves equation (1) in the entire complex energy plane is 
unavoidable in the case of broad resonances of atoms and clusters embedded 
in metals. Thus we see the recent application [lo, 111 of the CCM method in 
the determination of the resonances of chemisorbed atoms onto metal surfaces. 
Furthcrmore, the success of the CCM in predicting the atomic resonances gives support 
to our proposed calculational scheme [5,6] which also solves directly and finds the 
eigenvalues of equation (1). A our scheme employs Inglesfield‘s embedding scheme 
131 and the CHF methodology [7], it allows one to use jointly highly sophisticated 
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calculational techniques (band-structure and non-local Hartree-Fwk or CI ones) 
which have been independently used in solid-state and atomic physics so far. 

I t  is my pleasure to acknowledge fruitful discussions I had with Professor E N 
Economou and Professor E Floratos. This work has been partially supported by 
NATO Scientific Affairs Division under grant contract no 890816. 
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